

https://qiriro.com/epe2165/

Amplifiers

Readings

- Section 1.4 (page 15-25)
- Example 1.2 on page 20

Kizito NKURIKIYEYEZU, Ph.D.

- ¹Readings are based on Sedra & Smith (2014), Microelectronic Circuits 7th edition.
- ²Bold reading section are mandatory. Other sections are suggested but not required readings

Kizito NKURIKIYEYEZU, Ph.I

May 18, 2022 1 /

Why signal amplification?

- Many transducers yield output at low power and have little energy (Fig. 1).
- Such signals are too small for reliable processing, and processing is much easier if the signal magnitude is made larger.
- An amplifier is a circuitry that can increase the power of a signal¹

²https://www.daenotes.com/electronics/communication-system/ superheterodyne-fm-receiver

Kizito NKURIKIYEYEZU, Ph.D.	Ampli
Kizito NKURIKIYEYEZU, Ph.D.	Amp

FIG 1. Principles of an FM radio receiver²

A radio receiver's antenna get very low power level, on the order of piccowatts or femtowatts. To produce an audible signal, this signal to be amplified a trillion-fold (i.e., the gain $A > 10^{12}$)

May 18, 2022 2 / 12

Linearity and distortion

- An amplifier should not change nor introduce new information in the signal
- linearity —is property of an amplifier which ensures a signal is not "altered" from amplification
- distortion—is any unintended change in output
- The "wiggles" in the output waveform must be identical to those in the input waveform. Any change in Kilon NURIKY210, Ph.O. Amounter Manufacture and the amounter the amounter amounter and the amounter the amounter amounter and the amounter the amounter amounter amounter the amounter amounter amounter the amounter amounter amounter the amounter amounter amounter amounter amounter amounter the amounter the amounter amo

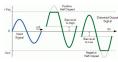


FIG 2. Non-linear amplitude distortion due to incorrect biasing¹

The amplitude of the original signal is distorted because amplification cannot take place over the whole signal cycle due to the shift in the Q-point.

¹https://en.wikipedia.org/wiki/Amplifier

Signal Amplification

 An amplifier that preserves the details of the signal waveform is characterized by Equation (1)

$$v_o(t) = A v_i(t) \qquad (1)$$

where v_i and v_o are the input and output signals. respectively, and A is the amplifier gain.

Voltage amplifier —boost voltage levels for increased resolution.

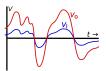


FIG 3. Signal amplification¹ The input $v_i(t)$ is amplified with a gain A = 3. The output signal $v_0(t)$ is a linear representation of the original signal $v_0(t) = 3 \cdot v_i(t)$

Amplifier circuit symbols

FIG 4. Circuit symbol for amplifier This symbol clearly distinguishes the input and output ports and indicates the direction of signal flow. In general, common terminal between the input an amplifier symbol must have two input terminals that are distinct from the two output terminals

FIG 5. An amplifier with a common terminal

An amplifier is often depicted with a and output ports of the amplifier. This common terminal is used as a reference point and is called the circuit around.

 Devuex exemplifier 	head				
Kizito NKURIKIYEYEZU, Ph.D.	Amplifiers	May 18, 2022 4 / 12	Kizito NKURIKIYEYEZU, Ph.D.	Amplifiers	May 18, 2022 5 / 12
				· · · · · ·	

Power and Current Gain

 An amplifier increases the signal power -an important feature that distinguishes an amplifier from a transformer (Equation (2))

$$A_{p} = \frac{load power(P_{l})}{input power(P_{i})} = \frac{v_{o}i_{o}}{v_{i}i_{i}}$$
(2)

A transformer can deliver a voltage greater its input voltage. However, the power delivered is always less than or at most equal

to the nower supplied by Kitito NKURIKIYEYEZU Ph D

May 18, 2022

 $\frac{V_p}{V} = \frac{L_s}{L} = \frac{N}{N}$

Expressing gain in decibels

- Log scale allows to represent very small and large number with small figures. For example:
 - $\blacksquare 10,000,000,000,000W = 130dBW.$
 - A voltage gain of A = 0.0000001 is A = -140 dB
- The gain is expressed in decibels as shown in Equation (3)¹

$$\begin{aligned} A_{v_dB} &= 10 \cdot \log \frac{V_c^2}{V_i^2} \\ &= 10 \cdot \log \left(\frac{V_c}{V_i}\right)^2 \\ &= 20 \cdot \log \left(\frac{V_c}{V_i}\right) \end{aligned} \tag{3}$$

- voltage gain in decibels = $20 \log_{10} |A_v| dB$
- current gain in decibels = $20 \log_{10} |A_i| dB$
- power gain in decibels = $10 \log_{10} |A_p| dB$

Note that the power gain equation use a coefficient of 10 unlike the other two. By convention. decibels refer to power. In the other cases, the the coefficient of 20 is a result of the fact that power is proportional to voltage squared and current squared

Kizito NKURIKIYEYEZU, Ph.D.	Amplifiers	May 18, 2022 7 / 12

The amplifier power supplies

- An amplifier needs external power supply to function. This ensure that it can deliver a power greater than the power drawn from the signal source
- An amplifier has two power supplies as shown in Fig. 61:
 - V_{CC} is positive, current I_{CC} is drawn
 - V_{FF} is negative, current I_{FF} is drawn
- Thus, the power drawn from an amplifier can be expressed by Equation (4)

Amplifier Saturation

Limited linear range-practically, amplifier operation is linear over a limited input range.

Kizito NKURIKIYEYEZU, Ph

- Saturation —beyond this range, saturation occurs. When there is saturation, the output remains constant as input varies
- To avoid distorting the output waveform, the input signal swing must stay within the linear range of operation, as shown in Amplifiers



FIG 6

May 18, 2022 8/12

Amplifier power supply

If the power dissipated in the amplifier circuit is denoted Pdissipated, the power-balance equation for the amplifier can be written by Equation (5)

$$P_{dc} + PI = P_L + P_{dissipated} \tag{5}$$

where.

Kizito NKURIKIYEYEZU, Ph.D

- P₁ is the power drawn from the signal source
- P_l is the power delivered to the load.
- The amplifier power efficiency, η is defined by Equation (6)

$$\eta = \frac{P_L}{P_I + P_{dc}} \tag{6}$$

Since the power drawn from the signal source is usually small, the amplifier power efficiency, n is expressed by Equation (7)

Amplifier

$$=\frac{P_L}{P_{da}}$$
(7)

Example: Infrared emitter and detector

Kizito NKURIKIYEYEZU, Ph.D

May 18, 2022 10/12

Working principle

- An infrared (IR) diode emits modulated signals at specific frequencies
- The signal is transmitted in pulses and modulated at around 38 kHz
- A phototransistor detects the signals and passes them through a series of analog circuits for processing.
- Modern remote TV remote controls are complex and involve programmable computers.

FIG 7. An infrared TV remote control

Detailed block diagram of the analogy circuit

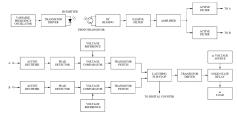


FIG 8. IR detector and emitter block diagram of the analog circuitry³

				³ Le. N., & O'Connor, T. P. (20	01) Infrared Emitter De	taatar Romata Control
Kizito NKURIKIYEYEZU, Ph.D.	Amplifiers	11	11/12			May 18, 2022 12 / 12
KIZITO NKURIKITETEZU, PR.U.	Ampimers	May 18, 2022	11/12	Kizito NKURIKIYEYEZU, Ph.D.	Amplifiers	May 18, 2022 12 / 12
				r rejoot. In 2001 / Inidar oor	(pp. 0 000).	
	I ho ond					
	The end					